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BUCKLING OF LOW ARCHES OR CURVED BEAMS
OF SMALL CURVATURE

By Y. C. Fung and A. Kaplan
SUMMARY

VWhen a low arch (a thin curved beam of small curvature) is subjected
to a lateral loading acting toward the center of curvature, the axial _
thrust induced by the bending of the arch may cause the arch to buckle
80 that the curvature becomes suddenly reversed. The critical lateral

loading depends on the dimensions and rigidity of the arch, the elasticity

of the end fixation, the type of load distribution, and the initial
curvature of the arch. A general solution of the problem is given in
this paper, using the classical buckling criterion which is based on the
stebility with respect to infinitesimal displacements about the equilib-
rium positions. i

For a sinusoidal arch under sinusoidal loading, the critical load
can be expressed exactly as a simple function' of the beam dimension
parameters. For other arch shapes and load distributions, approximate
values of the critical load can be obtained by summing a few terms of
a rapldly converging Fourler series. The effects of initial end thrust
and axial and lateral elastic support are discussed.

The buckling load based on the energy criterion of Kdrman and Tsien
is also calculated. The results for both the classical and the energy
criteria are compared with experiments made on a series of centrally
loaded, pin-ended arches. For larger values of a dimensionless param-
eter Ay, which is proportional to the ratio of the arch rise .to the

arch thickness, the experimental critical buckling loads agreed quite
well with the classical criterion, but, for smaller values of Aq, the

experimental critical loads were appreciably below those calculated from
the classical criterion, although they were always above those obtained
from the energy criterion.

INTRODUCTION

An arch subjected to lateral loads may become elastically unstable.
Generally speaking, there are two possibilities of buckling:
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(1) If the rise of the arch (a in fig. 1) is of the same order as
the span of the arch, then it is possible for the arch to buckle at the
critical pressure in the mode indicated by the dashed curve in figure 1.
Buckling of this type can be safely assumed to be "inextensional," as
suggested by Lord Rayleigh, and, as such, has been discussed by
. Hurlbrink, E. Chwalla, R. Mayer, E. Gaber, E. L. Nicolai, and
S. Timoshenko. (See Timoshenko's book, reference 1, for references to
original papers.) In all these studies, circular arches under uniformly
distributed lateral loading are assumed, with various types of end
fixations. .

(2) If the rise a of the arch is much smaller than the span L,
(fig. 2), then the induced axial thrust plays an important role in the
elastic stability. The beam may become unstable and suddenly reverse
its curvature, jumping, for example, from the solid-line position in
figure 2 to the dashed-line position.

It is the object of the present paper to treat arches of small rise;
therefore, the buckling deformation will be "extensional" rather than
"inextensional.” It will be shown that the variation in the initial
curvature of the beam has a very important effect on the critical load.
Furthermore, with a view to possible applications to thin-wing design
problems, beams acted on by initial thrust and those with elastic sup-
ports will be discussed.

The same problem has been treated before by Biezeno (reference 2),
Marguerre (references 3 and 4), Timoshenko (reference 1), and Friedrichs
(reference 5).1 Biezeno and Timoshenko derived the fundamental dif-
ferential equation in the same manner as this paper, while Marguerre
and Friedrichs derived their equations by variational principles. The
resulting equations are the same. Biezeno treated a circular arch under
a concentrated load at the center and Marguerre and Friedrichs, a cir-
cular arch under uniformly distributed pressure; all arrived at the main
features of the buckling problem, but the calculations are rather involved.
Timoshenko assumed that the center line of the deflected beam as well as
the initial shape is a half wave of a sine curve and arrived at a very
simple solution. The restriction of the buckling mode to the symmetrical
one, however, sometimes gives the critical buckling load manyfold too
high in a certain range of arch rise.

The buckling criterion used by the authérs of references 1 to 5
is the classical one which is based on the stability with respect to

larter completion of the present work, it was learned that Hoff and
Bruce (reference 6) treated a similar problem from the point of view of
dynamic stability. Part of Hoff and Bruce's work coincides almost
identically with the present report.
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infinitesimal displacements about the equilibrium positions. But
Friedrichs, in reference 5, also calculated the buckling load on the
basis of Tsien's energy criterion, which is based on finite displace-
ments. The energy criterion yields a buckling load much lower than
that obtained from the classical criterion. It is not evident which
of these two criteria corresponds to the real practical situation.
Therefore in this paper, both criteria will be used and the results
will be compared with experiments.

This work was conducted at the California Institute of Technology
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS
A cross-sectional area of beam
a rise of arch
E Young's modulus
F dead-weight load (in section "Buckling Load Based on Karmin
and Tsien's Energy Criterion")
H axial compression at ends of beam
Ho initial thrust in beam
I moment of inertia (or second moment) of cross section of beam
K = n*512[ar3
2

. .};l;; + é%(kl -1 - k)3

36L A2 - 13
L span of beam
M bending moment; positive when it tends to put upper side of

beam in compression

M, bending moment due to lateral forces alone
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shearing force in beam; positive when \jp Q dx produces
A
positive moment

lateral pressure per unit length of beam; positive downward
(in negative y-direction)

characteristic lateral pressure per unit length of beam

thickness of beam

strain energy

change in thrust in lateral support

total lo;d beam can sustain without buckling
actual and initial curve of center line of beam, respectively
spring constant of arch support

spring constant of lateral support
distance\spring-supported end of beam is displaced
deviation ratio (am/al)

radius of circular-arc arch

bending stress in beam

axial stress in beam

op = (*eI/ 12)/ a

¢

total energy for dead-weight loading

Subscripts:

class

conc

cr

classical criterion
concentrated loading

critical
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energy energy criterion
exp experimental

max maximum

sine sinusoidal loading
unif uniform loading

Nondimensional coefficients:

Let
[=0]
yo=§L_:‘3'5:nLE’innE
m=1 L
Yy = Efi bpl s8in E%E
m=1
a = g f(x)
Then
anl (A
M=o\t
byl A
Pn =5 |1
N
R = WL~ X
otET \ 1
: HoL?
TPET
.
ﬂ:
o+ 22
T
L - 20’13

(m

1, 2, 3,

1, 2, 3, . .
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GENERAL ANALYSIS

Consider a thin curved beam of small curvature, one end of which
is hinged, that is, it is free to rotate but is fixed in position, while
the other end of the beam is attached to a spring, with a spring con-
stant . When the spring-supported end is displaced by a distance A,
the thrust induced iIn the spring will be

= Hy + aA (1)

where Hy is the initial thrust built in the beam.2 (See fig. 3.)
Before the application of the lateral load q(x); the axial load in the
beam is H, and the beam center line is represented by the following

Fourier series:
Eﬁ: agpl sin & — (2)

Under the lateral load q, the displaced center line can be written
as

y = j{: byl sin = = (3)

m=1

Assume that |yo| and |y| sere much smaller than L, and hence
|am| and |bp| are much smaller than 1; that the beam is made of

homogeneous material, of constant cross section, and with small curvature

so that (dy/dx)® is negligible in comparison with 1; and that the

thickness of the beam is much smaller than the radius of curvature of the

beam. Then the usual beam theory gives

o 2
Ex(i_xg_i—;’ﬁ> - ()

2No generality is lost by treating this case of one end spring
instead of the case with both ends of the beam elastically supported
because the springs at both ends can be replaced by a single spring at

one end.
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where M 1is the increase in bending moment due to the application of
q(x). From statics,

M = MLX Q & - (Hy - Ho¥o) (5)

Substituting equation (5) into equation (4) and differentiating twice,

remembering that %% = -q and that the axial thrust in the beam H can

be regarded as constant by the assumption of small curvature, the equa-
tion of equilibrium is obtained:

dh(y - Yo) + H ay d2¥o
2~ P73

EI
axt ax

= -q (6)

To find the thrust H, it is noted that the shortening of the
center line of the beam is

.1 - ayo\® ay)°
AL = 5\]; (Ei) - (EE):] ax - A (7)

where small quantities of higher orders are neglected. It is assumed
that the end support spring is rather strong, so that A 1is very small
compared with L. (Otherwise the problem becomes one of a simple bending,
with no possible difficulty.) Hence

==}
I
==}
o
-+

]

e}
[0}

+

2 ") - @] =2 ®
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On the other hand, the deflection A 1is connected with the spring
constant o« by equation (1). Eliminating A between equations (1)
and (8), substituting equations (2) and (3) for ¥y and y, into the
result, and integrating, there is obtained

H—HO+B———Z n? (a2 - by?) (9) - _
where
B.= — = (10)
@+ .

Substituting equations (2) and (3) again into equation (6) and using
equation (9), there is obtained now the equation of equilibrium expressed
in terms of the Fouriler coefficients:

H ne
-q=”h””§lzm”(bm o) ot B+ 25 ) a2(sy - by ain BEE -
L il T

B ﬂé%é[g;: mz(gm? - th9 }Z: m?bm sin = =5 (11) .

The boundary conditions are already satisfied.

Expand q = g f(x) into a Fourier series:

= g f(x) = q Z kp sin Ef“’ﬁ (12)
m

where

,.
-t
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On equating the coefficients of the corresponding terms in the right-.
‘ hand sides of equations (11) and (12), there is obtained a set of an
’ infinite number of simultaneous equations:

4 22
i na(bn2 - an2) wehy, + (ﬁh]lz,“;m - HO,; )(bm - em) = -ky

n=1

B

ﬂ&EA
k1,

(m= 1, 2, 35. . ') (13)

To simplify the expressions, introduce the following notations:

~
eml [ byl (&
s b -\t
> (14)
1 2
9kt E _ HoL
R_zn"EI\[I— ® T m

Then equations (13) become

0 00
Bn|p n23n2-szn2xn2+m2-s =-—R§km+xm(m2-s)
m
n= n=1

(m=1,2,3,...) (15)

Here Ap and Bp represent the rise of the arch, being half the ratio

of the amplitude of the mth harmonic in the initial and the deflected
curve to the radius of gyration of the beam cross section; R 1is a
dimensionless quantity specifying the lateral loading; and S is the
ratio of the initial axial compression to the Euler column buckling load
of the beam. Now f£(x), \p, and S are known in the problem; it
remains to find the relation between R and Bp, from which the corre-
spondence between the load and deflection can be traced and the stability
of the beam determined.

Sometimes the Fourier series of the moment curve converges much
faster than that of the loading itself. In such cases it is advantageous
to use equations (4) and (5) directly instead of equation (6). Let the

B static bending moment of the lateral loading alone be written as Mg:




10 NACA TN 2840

M, = qLeF(x) (16)

o]
where a4 is a characteristic latersl pressure with the physical dimen-

sions of force per unit length of the beam. Let F(x) be expanded into
a Fourier series, so that

Mo = qgi? ) K sin I (1)
m=1
where
2 7 )
Kn =5 | F(8) sini%édg

Following the same reasoning as before, one arrives at the equations:

BmBZnQan-BZnQ)m2+m2-S = KR + Mp(m2 - 8)
n= n=

(m=1,2, 3, .. .) (18)

Both equations (15) and (18) will be used later. They are a system
of an infinite number of simultaneous equations for which a general
treatment is not known. However, there are many important cases where
the number of equations can be reduced into a finite number; then a
complete discussion is possible. Several examples will be given below.

Equations (4) and (5) may be written as o
d%z+ H y_d2y0+Mo(X) +H°y
dx2 EI dx2 EI EI YO

G(x) (19)
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where G(x) is a known function. The general solution is

¥y = Cq cos vx + Cy 8in vx + %\]ﬁx G(t) sin v(x - t) dt (20)
0]
where
v = H
~ YEI

The constants C; and Cp, must be determined according to the boundary

conditions at the ends y =0 for x =0 and L. The solution y(x)
can then be substituted into eduation (8) and v computed. This gives
a relation between v and the external load. Bilezeno and Friedrichs
based their calculations on this relationship. Marguerre, on the other
hand, used the energy principle and the methods of Ritz and Galerkin to
obtain approximate solutions. The method of the present paper, based
on the Fourier analysis, is due to the work of Y. S. Huang. Recently,
the same method was used by Hoff and Bruce (reference 6).

It is clear from equation (20) that the deflection and the critical
load are continuous functionals of yo(x) and My(x). Hence infini-

tesimal changes in yo(x) and Mg(x) would always cause an infini-
' tesimal change in the critical load.

’ SINUSOIDAL ARCH UNDER SINUSOIDAL LOADING

Consider the simplest case of & low sinusoidal arch subJjected to
a sinusoidal load distribution:

b10:4
S (21)
= x
q do sin T
-

3Professor of Aeronsutics, Centrel University, Nanking, China.
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The general equations of equilibrium (15) then become, in this
particular case,

~
B;{B }E: ®B 2 - BM° + 1 - s> = R+ M (1 - 8)
n=1
32<F EE: B2 - BA2 + b - ;) =0 |
n=1 .
| e (22)
Bm<BZn2Bn2 B>»2+m2-8>=0 |
n=1
R

This set of equations must be solved for Bp. In order to get a

gqualitative investigation into the nature of the solution, first consider
the simplest case of an arch rigidly hinged at both ends, s0 that o = »
or B =1, and with zero initial axial thrust S = Hg = O. The more

general case will be considered later. ;

An obvious set of sqQlutions of equations (22) is

Bp=Bg=...=0
' (23)
B3 -B(Mm2-1) =% -R

If the relation between B; and R 1s plotted, the curves in
figure 4 are obtained. Depending upon the values of A1, there are
several possibilities: (1) If M < 1, the curves have monotonic slope;
consequently, they determine the load-deflection curve uniquely. There
is no question of instability. (2) If XA; > 1, then there are two real
extremes and, for values of R in between these extremes, every loading
may have three possible positions of equilibrium. Following, for example,
curve IV in figure 4, the deformation of the beam can be traced as follows:
When the lateral loading is gradually increased from the starting point a,
the deflection gradually increases according to curve IV (the rise of the T
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arch decreases). When the point M 1is reached, any further increase
of loading will make the beam jump to the configuration corresponding
to the point N and then follow the right-hand branch of the curve.
In between M and N, any increase in deformation needs no addition
of loading and therefore is unstable. Hence M 1is the critical point,
with the critical condition given by ’

3
dR
Eﬁi =0

) S (24)
g;%_ < 0
" J

From equations (23) and (24), the critical values of Bl. and R can

be obtained: -~

- (25)

Re. = M + V%(xf - 1)3

J

If M <1, Rer is imaginary; hence no instability will occur.
This checks with the former discussion based on the uniqueness of the
load-deflection curve.

The above solution, equations (23), however, is not unique. Equa-
tions (22) can allow a solution with one By, in addition to By, to be

different from zero. In this case

-
By(B12 + 28 2) - (% - 1)B; = -R

‘ (26)
B12 + n?an = xl2 - n°

hThese two cases exhaust the possibilities, as can be seen by writing
down the rest of the set of equations (22), which gave the result that all
other B's must vanish.
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have the solution

2
o 2 .2 o2 (R-M
n Bn = Xl -n (2—-)
n- -1

J
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(27)

Equations (27) indicate that B, can exist (with real value) only in a

definite range of R. The deformation history of a beam subjected to
gradually increasing lateral loading can now be traced as in figure 5:

Along ab, B, = 0, the curve is that of equations (23).
Bp # 0, the deflection curve becomes

Ix
L

+ byL sin BXX

¥y = bjL sin T

If the point b is real and lower than M, then it is the critical

Along bc,

(28)

point where the beam will have a tendency to buckle. The point b is

given by

- 2
Bl— Xl - n

R=2 - (0 - 1)2 - o

Equations (29) will yield the lowest critical value if the following

conditions are satisfied:

(1) R, By, and B, are real

?

7

(29)

(2) The R given by equations (29) is less than the R given by

equations (25)

(3) The By given by equations (29) must be greater than that

given by equations (25); otherwise, the beam will buckle in

the first mode, at point M
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(4) The particular pnumber n is so chosen that the corresponding
Rer 1s a minimum

Conditions (1), (2), and (3) are satisfied if and only if

Me 2 g.(n2 - %) (30)

Condition (4) is satisfied only if n = 2. Hence the complete expression
for the critical loading is obtained:

~
4 2
Rop = A + 57(xl -1)3 (L€ M < (5.5)
(31)
Rer = M + 3|A° - b (M2 53)

The relation between the critical loading and the beam-rise ratio is
illustrated in figure 6. The solid lines are the actual critical condi-

tions. The dashed lines are elither imaginary or not the lowest critical
load.

It is interesting to note here that for M < V5.5 s 2.345 the
buckling mode of &, low sinusoidal arch is symmetrical but for Ay > 45.5
the buckling mode imitates that of a high arch, for which the deforma-
tion is essentially inextensional. As illustrated in figure 7, the arch
deflects (flattens) at first under the increasing lateral loading from
the initisl position I to the state II, when the second mode B, starts
entering into the picture. The mode of the beam during buckling, when
it jumps from the upper to the lower side, is & curve like IITI in
figure 7.

EFFECT OF INITTAL AXTAL COMPRESSION

Still restricting this discussion to the simple case of a sinusoidal
arch under a sinusoldal loading and with fixed hinged supports at both
ends, let an initial compressive force H; act on the beam, so that

2
_HL

=

S]
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is different from zero, S being the ratio of the initial axial compres-
sion to the Euler column buckling load of the beam. The equation of
equilibrium is given by equations (22) with B = 1. The solution of

this set of equations is again either

By #0, Bp=Bg=...=0
or
By £ 0, B, #0, sall the other By's vanish

One is led to the following conclusions:

-
For {1 - 8 <2-S \(5.5 - 5,
L
Rep = (1 - S)Aq + v§7(x12 +8 - 1)3
e (32)

and for M > 45.5 -5,

Rep = (1 - 8)aq + 3Vx1§ +8 -k

-

The effect of the initial axial compression is included in this formula.
As expected, the increase of the initial exial compression will decrease
the critical load, as can be easily verified by the fact that

): S
S

<0 (33)

for the full range of S, 0 S5 S 1 (S cannot exceed 1). Furthermore,
the lower 1limit for instability is now

For A7 smaller than this value, the bar is stable; no buckling is pos-
sible. This lower limit decreases with increasing S until S = 1, when
the beam will fail as a simple Euler column, Rer becoming zero.

-z
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The values of the critical load R.,. as a function of Ay, with

values of S as parameters, are given in figure 6 and teble I. A
clearer presentation of the effect of S 1is a curve of the change in
the critical load QaRcr)S against A3, where

(Ber) g = (Rex) gy = (Rer) gog | (35)

This is given in figure 8.

From equations (32), it is seen that when \; is large, say, with
magnitude of the order of 2.5 or larger, (ARcr)S is almost linearly

proportional to S. As a crude approximation, one may take

R
(8fcr)g = (—CE)—Sﬂ (36)

INITTAL SHAPE OF ARCH OTHER THAN SINUSOIDAL

In order to find the effect of the irregularities in the initial
shape of the arch on the buckling load, some simple cases of low arches
whose center lines are nonsinusoidal will be considered. By comparing
such solutions with the previous one, the significance of such varia-
tions in form can be estimated. Let the initial shape of the center
line of the arch be given by the equation:

X mice :
Yo = 8L sin T+ ayL sin - (37)

(A few examples are shown in fig. 9.) Assume again for simplicity that
the lateral loading q 1is sinusoidal, given by equation (20), and that
the ends of the arch are hinged and without initial thrust, so that
H,=5 =0 and B = 1. The fundemental equations (15) become
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~

Bl(E N 1) = R+)n
n

Bm(Z 2B - M2 - oA + mz) = mg > (38)
n

I
o

(for all k # 1, m)
»

Again two possibilities exist: (1) A solution consists of By # O and
By #£ 0, but with all other B's vanishing; (2) a solution with one By,

other than B; and Bj, different from zero. They must be discussed
separately.

2, 2 2 2. 2 2
Bk(zg: n By - Xl - m Xm + K )
T

In the first case, By and R may be regarded as functions of Bj
and the second of equations (38) differentiated to determine dBp/dB;.
From the sign of dBm/dBl -1t can be observed that, when the load R 1is
gradually increasing, the amplitude of By (i.e., |Bm|) will increase

irrespective of the initial gign of Ap. Furthermore, by differentiating
the first of equations (38) to obtain dR/dB;, it can be observed that,

in the prebuckling stage, the amplitude By will decrease when the
load R 1increases. Hence the critical condition is given by

— =0 (39)

Carrying out the differentiation and reducing, the equation governing
By at the critical condition is obtained:

Bml*+cBm+d=o (ko)
where

2 2, 2 2
o= - 2Xl + 2m“Ap~ - 3m° + 1 Am
2(m? - 1) )

322

S IE-D
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Equation (40) can have at most two real roots. If the two real
roots are different, then the one nearer to A, 1is the true critical

value provided that the corresponding (Bl)cr and Repr are also real.

If equation (40) has no real root, then there is no critical load and
the beam is stable.

With the critical value of Bp 80 determined, the critical values
of By and R can be obtained from equations (38) as follows:

2 . m?km l )
(Bl)cr = ?__)__ + lle - m2 (BEI.) 2 -~ 2 -+ 1
L (41)

Am

Rcr =M + (m2 _ l)(B]_)cr - me m(Bl)cr

-/

It is interesting to note here that the critical load is independent of
the sign of Ap. This is so because a change in sign of Xy changes

the sign of the roots (Bm)cy Of equation (40). But since (Bm)er/Mm

does not change sign B from the first of equations (41) is not
? 1) er

affected by the change 1n sign of A,. Hence the conclusion follows
from the second of equations (41). This is rather unexpected. It shows
that under sinusoidal loading the two apparently different curved beams
in figures 9(b) and 9(c) have exactly the same critical load.

Equation (40) can be solved graphically or numerically. The results
of such calculations for the cases m = 2 and 3 are given in figures 10(a)
and 10(b). The magnification of the amplitude of the higher harmonic,
initially at Ay, into (Bm)cr at the critical polnt, is clearly seen

from figure 10. The reduction of the critical load due to the presence
of Ay will be discussed later when the second possible solution is
obtained. The parameter used in the curves of figure 10 is not Ay
but the deviation ratio:

_ M _fm
5_7\1_— (k2)

This ratio indicates the deviation from a sinusoidal form better than
the parameter X, itself.
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It remains to discuss the second possible solution which includes
one nonvanishing By (k £ 1, m). In this case the solution of equa-

tions (38) is a
. - k_;% L | SNCEY

Ko Bk xl + m Xm K - (@m‘?:i)g - 82_-)‘32

| J

The relation between By and R is again an ellipse of a similar
nature to that for a- sinusoidal arch under sinusoidal loading. The
instant when By will appear is the critical point. Hence the condi-
tion By = 0 leads to

- m2)?

This will lead to a fundamental critical value if the four conditions
enumerated under equations (29) are satisfied. Whether equations (k1)
or equation (4h4) gives the critical load depends on the initial shape
of the beam.

Rep = M + (K2 - 1 "‘"12‘1‘2““2*1112‘5-&-2—?&-— (Lh)

If m =2, equation (44) always gives a higher Ry than equa-
tions (41). Hence the critical load is determined by equations (41).
No B3, B), and so forth can appear during buckling.

If m 23, equation (4) with k = 2 gives the lowest R,
provided that Xy 1is greater than a certain constant, say (Xl)o. For
A less than (Xl)o, equations (41) give the lowest R.,.. The point

(Xl)o is the point of tangency of the curves of Rcr against A\
computed according to equations (41) and (Ll4), respectively.

Again it is evident from equation (44) that the critical load is
independent of the sign of Ap.
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The combined results of equations (41) and (44) are shown in
figure 11, and the numerical results are given in tables II and III.
In teble II, (Bp)er &nd Rer computed according ‘to equations (L0)

and (41) are listed. Comparing tables II and ITT, it is seen that in
certain ranges of \j, equations (41) give the lower R.p, while in

another range equation (44) gives the lower Ryp. Furthermore, at
smaller values of XAy, even if A3 > 1, (By).. and Rer may become

imaginary, as shown in table ITI. The physical meaning of this is that
the process is then a continuous one. There is no sudden change of
configurations. The beam, under bending, simply yields continuously to
the increasing external load.

These examples illustrate the serious nature of the effect of
the ), terms. When the loading is symmetrical, a very slight com-

Ponent .of unsymmetry in the curved beam lowers the critical load con-
siderably. For example, in case of a sinusoidal loading acting on a
sinusoidal beam, an unsymmetrical second harmonic in the initial curve
with an amplitude ratio of 1 percent in the initiel form lowers the
critical load by approximately 10 percent. The buckling mode is always
unsymmetrical if the initial shape of the arch contains unsymmetrical
modes.

On the other hand, for a symmetric loading, the effect of higher
harmonics that are symmetrical 1s much less pronounced. A similar
effect should be expected when the beam is sinusoidal but the latersal
loading deviates from a sinusoidal distribution.

An important special arch form is a circular arc with a radius p .
Within the present approximetion, there may be written

2
L1, 1 nx
3 ;§ sin - (45)

b1
TPo n=1,3,5,...

1
Yo = 55; x(L - x) =

This corresponds to an arch rise of L2/8po at the center. The coef-
ficients \; form a rapidly decreasing sequence. In fact,

y12
a = 8oy =0
oy ‘

a, =0 8y = 1 8
2 - n+l T 1
(2n + l)3

a, = = a
32771
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The effect of the higher harmonics is negligible. If ag, &y, and so

forth are neglected, then the Rer (8inusoidal loading) of a circular
arch can be found from figure 11(b) or table III (m = 3) by taking

The difference in R, is readily seen to be small.

To illustrate the fact that as, a7, and so forth may be neglected

without causing appreciable error, the case of the unsymmetrical buckling
mode will be considered. Equations (43) should be modified, when %k = 2,

into
S P82 =5 A2 -k
n n
R~X
By =
1 3
A
1
o n(m? - 4)
Now
wPAE = N = (1 reg)n?
1
0=1,3,55-.- n=1,3,5,... ;-E (
A 2 o)
2n 2 al >"l
By = z =5 (l + 62)
m=3,5)7,-.. m=3,5’7’... (1'ﬂ:2 - ll-) 5
where
€ = 0.01436

0.07325
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The critical load is given by the equation:

R-xV 2
<-_§__l> + (1+e2)%=(1 + €)M - b

Neglecting the effect of A5, A7, and so forth on Rgy 1s to neglect
the effect of €; and €p on the root R of this equation. It is
clearly Justifiable.

UNIFORMLY DISTRTIBUTED PRESSURE

In this section the critical load of & sinusoidal arch under
uniformly distributed pressure wlll be discussed. From the results of
the preceding sections, it is expected that the deflected curve of the
arch would not remain sinusoidal and that an unsymmetrical component
would in general enter into the buckling mode. For simplicity, again
consider a simple sinusoidal erch, with ends hinged and without initial
end thrust, so that p =1, A =223 =...=0,and S =0. The

lateral pressure 1s denoted by g, per unit length of the span. Hence

the bending moment in the beam, due to the lateral forces alone, with-
out counting the contribution of the axial thrust, is

Mg = % qox(L - x)
hLQ 1 nnx |
ﬁT— —1;5 s8in '—L—- (11—6)

n=1,3,5,...

It is convenient here to use equations (18) because the Fourier series
of M, converges much faster than that of the lateral loading itself.

From equations (18), there can be obtained
\

1, 3,5, « « )

I
n

Bm(z 0’82 - M2 + mz) - ?52_3 R+ 80 (m

n

252 _ 1.2 4 2
Bm(Zan - M +m>—
n

1 4f m = 1; dyp =0 if m # 1.

|
o

(m=2,4, 6, ...)
J (47)

where alm
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It is evident that when the load is applied, R # O, all the B's
with an odd subscript would in general differ from zero. It is also
clear from the second of equations (47) that only one of the B's with

an even subscript can differ from zero, because EE: n?Bn? cannot be
equal to two different values of kle - m?. As before, these two cases
would be separately treated.

Consider first the simpler case in which one of the B's with an
even subscript is different from zero. In this case the deflection
curve of the beam is unsymmetrical. Let the nonvanishing B -be Boy,

where k is an integer. From the second of equations (47), then
Z r°B2 = 31° - hk® (48)

Hence from the first of equations (47),

I
Bm=m2]-.hk2(—m3R+Blmll) (m=l;3}5)"‘) ()'4‘9)

Squaring Bp, multiplying by m?, and summing, there is obtained

16R° 1 2
P Z o2 - hk2)2'+ ke (50)
m=3,5,...

Equating this to hle - ke according to equation (48), an equation is

obtained relating Bpy with R. This relation is an ellipse, as in the

section "Sinusoidal Arch under Sinusoidal Loading." The critical condi-
tion is reached when

ar
—_ =0
dBox
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which implies that

Box = 0 (51).

With condition (51), the critical load Ry, is given by the following
equation derived from equations .(48) and (50):

8\R
16 .2 1 1 1 2 _ 1

S A T L L

(52)

The series in the coefficlent of R2 converges very fast. If all terms
except the first one are neglected, the error is less than 1/2 percent.
Hence equation (52) is essentially equivalent to

(% R - ’»1)2 = (m® - 1)2(x12‘ - 1n2) (53)

Comparing this equation with equations (29) for the case of a sinusoidal
arch under sinusoidel loading, it can be seen that they are almost

identical except that R 1in equations (29) is replaced by % R and n

is written here as 2k. One of the roots of equation (53) which would
represent the critical load on the beam must satisfy the four conditions
stated below equations (29). In a manner completely analogous to the
treatment of sinusoidal loading under equations (29), one concludes that
k must be equal to 1 and that the solution exists only when Ay is

~equal to or greater than J5.5. The critical load is then

Rep & E(xl + 3\/x12 - h) = E(Rcr)sine (xl 2 5.5) (54)

vhere (Rcr)sine means the critical R of a sinusoidally distributed
lateral pressure.

If the full series in the coefficient of R2 in equation (52) were
taken, then, since k = 1, and

-1 . 4,977 X lO‘h
m=3;7,... {2 - x)
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equation (54) is modified by a factor of epproximately (1 - OLOOS), or
] b
Rer = 0.995 1 (Rer) gipe (0 2 F5) (55)

Turning now to the other possible solution, that all the B's
with an even subscript vanish, one sees by analogy to the case of a
sinusoidal arch under sinusoidal loading that this mode of deformetion
would lead to a critical buckling load only if Ay 1is sufficiently small.
Let

n’B2 = C (56)
n=l,3,5,.:.
Then equations (L47) give
Bm= 1 - 4 R+8]I|1X1) (m=l, 3, 5, . . -) (57)
C-32+0°\ md

From equations (57) compute m?Bm? and sum:

C= Z wPBy>

m

_ 16 .0 Z 1 }
1[2 mh(C - Xle + 1112)é

m=1,3,5,...

A2
%RX]_ 12 + = (58)
C-M2+1 C-M2+1

This gives a relation between C and R but is rather useless because
of its complexity. A more practical solution can be obtained by suc-
cessive approximation. According to equations (57), for a given R,
B, decreases rapidly with increasing m. As a first approximation,

then, neglect the effect of B3, Bs, . . . and obtain from equa-
tions (47), m = 1, the equation of equilibrium:

B3 - (M2 - 1By = -%R N
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which is again almost identical with equations (22) for the case of a
sinusoidal arch under sinusoidal loading, except that R in equa-
L

tions (22) is now replaced by = R. Hence analogously,

{{El + \/m:l

= E(Rcr)sine (l s M s {5751

"~

(59)

Rer

For the second approximation, neglect the effect of B5, By, and
so forth, but consider B3. Now equations (L47) may be written as

Bl(;i: nan? - kle + é) % R + A + 8By
n

>~ (60)
2 2 4
B3(; nan - Xl + 9> = - ﬁ R p
Hence at the buckling point,

1k b o 3

<B3) . - o7 RCI‘ A’l + -2_'?(>“l - l)

Bi/.. & B B 2

< - 7 Ber + A1 + 8(Bl)cr (lBXl - 23#)(Bl)cr

Substituting into equations (60), which now become a relation
combining B; and R, and using the criterion dR/dB; = O for buckling,

there is obtained
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-~
(B1)er = (50e2 - 2 - %)
’ (61)
Rep = E(}l + /eh—,?(xle -1 - k)i‘l (xl < m)
o
where
2
.l
36 M2 - 13

Since k 1is always positive, the critical load R, given by equa-

tions (61) is always smaller than the first approximation given by

equations (59). But the difference is really very small because

k < 1. Values of k are given as a function of A, in table IV.
Since (Bm)cr decreases very fast with increasing m, the con-

vergence of the successive approximation is very good. From a com-
parison of equations (62) and (59), there appears no need for further
approximetions.

It can be concluded that, with an error less than 1/2 percent, the
critical value of R for a uniformly distributed loading is equal .
to n/4 +times that of a sinusoidal loading.

Interpreting the result somewhat differently, compare the total

load that an arch can carry when the load is distributed first uniformly
and then sinusoidally. Let W be the total load. Then since

Wunif = %L -
and
2
Wgine =7 % L

and since Rgy 18 based on q,

2
(Wer)gine _ ?(Rcr)sine 2/x 8 (63)
(Wer)ynie  (Rerdunier & e
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Expressed in words, if W 1is the total laterael load an arch can
sustain without buckling when the load is distributed uniformly over the

span, then the same arch can sustain only a total load of ié-w if that

load is distributed sinusoidally. Thus concentrating a load toward the
center of the arch lowers the critical buckling load.

CENTRAL CONCENTRATED LOAD ON A SINUSOIDAL ARCH

The cese of a concentrated load acting at the midpoint of the span
can be analyzed in the same menner as for the cese in the preceding
section. Only a very brief explanation will be given below.

Assume again that the arch is initially sinusoidel, rigidly hinged
at both ends and without initlal end thrust, so that B =1,
Ay = l3 =...=0, and S = 0. The lateral load is written as

W= qOL (64)

The bending moment due to the iateral forces alone is

% Wx for (O <x< %) -
_o VL T 1, mx
MO =< L . =2 ﬁe. N (-l) m2 sin T
5 W(L - x) for (§ £Sx ¢ L) m=1,3,5,...
L (65)

The equations of equilibrium are

Bm(z n°B 2 - A2+ m2>

n

nn 2
-8in -E- -—2 R + 8]_‘]1).1
m

(m=1,2,3, ...) (66)

For the unsymmetric‘mode of'buckling, if this mode is possible, the
lowest Rgp occurs when Bp # O, which implies that

2B 2 = 22 -
Z 252 - 22 -k

n
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and the critical load is given by the smallest positive root o6f the
equation:

by
LR® Z L 1p.8,240-0
m2(me - k) 9
m=1,3,5,...
Letting
1 _1+ce
m2(m2 - 4)2 9

m=1,3,5,...

where ¢ is approximately 0.0409,

_ 1 _ 8,2 _
R@-T———21+ 3 >~1+3/7\1 h+(9 A h)e | (67)

or

. 1
Rer = 'Q_(Rcr) sine

The numerical results of equation (67) which are used in the testing
program are tabulsted in teble V and compared with 3(Rer)gipe 1D £1e-

ure 12. TFor the symmetrical mode of buckling, steps analogous to those
in the preceding section lead to

Rep = %El + '/-e%(xf -1 - k')_{| (< 5:3) (68)

where

k' = 9k

X being the constant given by equation (62) and table IV.

—f.
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Hence Rer for a concentrated load is aspproximately equal to one-
half of Rgy for a sinusoidally distributed load.

Ag in the preceding section compare the load carrying capacity of
a low arch with respect to various distributions of the loading. Thus

|

(Wcr)conc .1/

7
(wa)sine 2/“ b

(Wcr)sine . 8
(Wcr unif — 2 > (69)
(Wcr)conc . 8 < X_2

B T

(Wcrjunif ;§

J

These ratios are within 2 percent of the corresponding ratios of
the total loads causing equal center deflections of a simply supported
beam under the three load distributions. This indicates that, for any
symmetrical load distribution, the buckling load Wgr 1is proportional-
to the total load (of the specified distribution) which causes unit

center deflection of a straight simply supported beam.5
CENTRAL CONCENTRATED LOAD ON A NONSINUSOIDAL ARCH

Because the experiments to be described were carried out on a
series of approximately sinusoidael arches with a central concentrated
losd, a more complete investigation of this case will be made. First
the case Ap £0 and A3 # 0 will be studied and the difference in
the influence of A3 on Rcr for sinusoidal load and Rer for a
central load will be shown. Then the case in which Ay # O, Ao £ 0,

and A3 % O will be investigated. The results of the second case are

more complicated and are used principally to show when the simple super-
position of the effects of A, and A3 is not possible.

5This result was previously shown by Timoshenko (reference 1) for
the case of symmetrical buckling mode.
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For a pin-ended arch without initial thrust (B = 1, S = 0), the
equation of equilibrium for a concentrated center loed is

Bm[é;:;ne(xn? - Bn2) - m%] = Eg sin %;_- m?km
(m= i, 2, 3, . . -) (70)

If only M #0 and X3 # 0, equations (70) become

Bl(xf + 9hg2 - Z n°B 2 - 1) = 2R - )
n
Be(’vle + 9g® - Z L 1‘) =0 r (71)
F |
B3(7\.12 + g7 -}n:naane - 9) --Zr -9y

For the case of buckling in the unsymmetric second mode one can

solve for Z n®B,2 from the second of equations (71). Substituting
n
this into the other two of equations (71), solving the resulting equa-

tions for B; and B3, and again forming the sum }:: n2Bn2 an equa-
n

tion is obtained comnecting R, A1, 23, and Bpo. At the critical

condition B, vanishes. Thus one arrives at an equation governing the
critical load: .

- 1 L 36 8,2, 504, 2 -
n=1,3,5,...
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Letting

1

22 - 12 9

s

n=1,3,5,...

4
Il

1.0409

there is obtained

1 81 81 2 1134

It is interesting to note that in contrast with the sinusoidal load
case, the sign of X3 is important, and Gﬂng no longer approaches

%(Rcr)sine unless g% X3 << Ap. In fact, the effect of A3 on the

ratio (Rcr)concl(Rcr)sine can be asppreciable.

81
The -2—5

the squaring of the right-hand side of the last equation of equations (71)

to obtain B32. If the case is considered in which only A; and X

are different from zero, there is no corresponding cross product and
therefore it can be expected that Ao will have the same proportional

effect on R, for a centrally loaded arch as for & sinusoidally loaded
arch. Physically this difference in the effect of A, and X3 seems

reasonable since the central load occurs at the maximum amplitude of
the A3 wave, but at a node of the XAy wave.

conc

X3 terms in equation (72) arise from the cross product in

For the case in which A\, A, and X3 differ from zero it is

known from the section "Initial Shape of Arch Other Than Sinusoidal"
that buckling always occurs in the second mode and that the influence
of the higher modes is small. Therefore €ll By's with m >3 will
be neglected. Letting B =1 and S = O, the equations of equilibrium
are
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3
By Z n2kn2 _ B12 _ )-I—B22 - 9332 -1} = 2R - )"l (739-)
1
3
Bl 2 2B? - B2 - mp® - ome® - k|- g (73b)
1
3
2 2 2
332:11%2‘312‘1‘32'9332'9='§R-9k3 (73¢)

These equations are to be solved for the critical values of Bj,
Bp, B3z, and R under the critical condition OR/0By = 0. The solution
can be effected in the following steps:

(1) Eliminate R between equations (73a) and (73c) and use
equation (73b) to obtain an equation conmecting B; and Bo:

A% A 2
(3 - h%) +9(5 + h’l%) B2 +2(3 - l*g)(kl + BlAg)B, -

2/
9(% + b %2) (jgg - hB22 + }::ngkn? - ) + (xl + 81)\3)2 =0 (Th)

(2) Differentiate equations (73a) and (73b) with respect to By
and use the critical condition BR/BBl = 0 and equation (73b) to obtain

0Bp/dB; and BB3/BBl at the critical point. The results are expressed
in terms of By, By, and B3.

(3) These expressions for (BBQ/BBl)cr and (aB3laB1)cr are

substituted into equation (73a) after differentiating it with respect
to B). Using the critical condition OR/dB; = O and eliminating B3

through equation (73b), an equetion for (B1)o, in terms of (Bg)cr
is obtained:
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1 10

2 _ Ao > 1o 2 _ 2, 25 2
2 )ex ‘E“l‘@j”(mr%@e)@ 342 ) Wt (15)

n

By plotting equations (74) and (75) a compatible solution can be found.
This solution will not hold for o = 0, but it is valid for x3 =0,
although no simplification will result. The results for a series of
arches with Ap/A] = 0.005 and A3/M = 0.0k4, which are representative
of the test specimens to be described in the experimental section, are
tabulated in table VI and plotted in figure 12. Comparing this with
figure 11 it is seen that the combined influence of Ap and A3 1s
stronger than the sum of their separate influences for lower values of Aj;

but for higher values of xl(ile > 5g5) the principle of superposition
can be used. This is not unexpected since for low values of XAy the

presence of XAo causes the mode of buckling to change from symmetrical
to unsymmetrical and thus changes the influence of A3 on Rer-

In figure 13 the process of loading is pictured for two examples in
the above sequence of arches, one below the dividing value of A = JETB
and one above. The changes in amplitudes of the three modes XAy - By,
By - Ap, and B3z - A3 are Plotted as functions of the load R for

M =2 and M = k. It is to be noted that, for the lower value of
Ay Be does not increase rapidly until just before buckling occurs,

while, for xl = 4, Bp starts increasing rapidly at a point appreciably
before the buckling point. For both cases B3 increases at an almost
constant rate until just at the point of buckling.

ELASTIC SUPPORTS AT ENDS

So far the ends of the arch have been considered as rigidly hinged.
Since ideal rigid hinges cannot be realized in the testing machine, it
is expected that some deviation in the experimental buckling load from
the theoreticel value may exist owing to the yielding of the supports.
In order to obtain some quantitative measure of the effect of support

displacement, an example of an arch with elastic supports will be
considered.

Assume that the supports are perfectly elastic.” Let a be the
spring constant of the support so that a displacement A would produce
a thrust of magnitude oA. Without loss of generality it can be assumed
that one end i1s rigidly hinged, and the other is elastically supported,
as shown in figure 3. The effect of the support rigidity on the
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equilibrium is expressed by the parameter B, defined by equation (10).
The equations of equilibrium are either equations (15) or (18).

As an example, consider a sinusoidal arch loaded laterally by a
sinusoidally distributed load of intensity q per unit length:

Yo = &L 8in Ix

I
-
=

q = q, 8in %%

The equation of equilibrium is given by equations (22). The solution
obtainable in the same manner as in the section "Sinusoidal Arch under

Sinusoidal Loading" is

-

B2 - 1 + 8)3 ‘
Rcr=(1-s)xl+‘/%( 1 5 ) (v—lE-<xl§(xl)o)
| o (6)
Br2 - b 4+ 8
Rep = (l-S))\.l+3\/ 1 B ! ’ (Xl> (kl)o)
/

where (kl)o is the smallest positive real root of the equation:

(B2 - 4+ 5) = —2-%(3)12 -1+ 5)3 77

The effect of the nonrigidity of the support (B < 1) is shown in fig-
ure 14 and table VII. The. values of (Ai)o as a function of B are

also given in that figure and table. The limiting case, o —>» and
B——>1, checks with the results of the sections "Sinusoidal Arch under
Sinusoidal Loading" and "Effect of Initial Axial Compression.”

If the support offers no resistance to the axial thrust, that is,
it is perfectly flexible, then o =0 and B = 0. In this case there
is no critical buckling load; the arch deflects continuously because the

lower 1limit of A3, l/VE; below which no buckling can occur, now tends
to infinity.

-z
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Similarly other loading conditions may be treated. For example,
if B differs from 1, the ratios of Ry for a uniformly distributed

load, a sinusoidally distributed load, and a concentrated load at the
center are again, respectively, /4, 1, and 1/2.

LATERAL ELASTIC SUPPORTS

In application to certein wing design problems, it is desired to
investigate the effect of lateral elastic supports on the buckling load
of the arch. As an example, consider an arch having an elastic support
at the center, as shown in figure 3. Let o' be the spring constant
of the support. Then the change in thrust in the spring is

v-afa - (2] (78)

where A' - (A')o is the change in the deflection at the midspan. No
generality is lost by assuming (A')o to be zero, if initial thrust in
the spring is counted as a lateral force.

Now when the deflection curve of the arch is given by equations (2)
and (3),

m-1
- (A')o = (-1) 2 (am - bp)L (79)
m=1,3,5,...

The moment contributed by V is then (cf. equation (65))

m-l‘

2VL B 1
(Mo)v -z (-1) = sin E%E (80)

Combining equations (78), (79), end (80) end adding (Mo)v to the right-

hand side of equation (4), there is obtained, after some reduction, the
equations of equilibrium (equations (18) modified):
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Bm<? zij neBn? - é{: n2kn2 +me - 8| = -nzme + Am(me - S) + G
n

gin BT H (-1)-T(xn - Bp) (81)

-z

3

Since a simply supported beam with a unit concentrated load at its ;

13 213
center has a deflection of under the load, K is

W8 ET ¥ § ET
approximately the ratio of a' +to the spring constant of a simply sup-
ported beam having the linear dimensions of the arch.

Consider a sinusoidal arch subject to sinusoidal loading. For
slmplicity let the initial thrust be zero and let the end hinges be
rigid. Then if m £ 1,

B=1
S=0
Ap = O
K, = 1

2
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The governing equations are

Bm<g n®B 2 - 12 + m2) = BpR + By +

m-1 n-1
(-1 % Ty - Z (-1) 2 B, (if m is odd)
J o n=1,3,...
(83)
0 ' (if m is even)
. , :
Let
N
a1
Q=1 - (-1) 2 By
n=1,3,..
f (8k4)
- n2p_2
n=1,3,... )

then
B xl-R+2uQ
l:
2
P+1- xl
m-1 :
B = (-1) 2 2HQ (m o0dd and 2 3)

Vith these values for Bj, there is obtained

Q=12 + —-h Z 2K (85)

P+1 - xle m.2(P2 + me - kla)

m
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First calculate the critical load for unsymmetric buckling where
Boy, # O for some n. Then according to equations (83),

P =32 - bn? (86)
But P is also given by
P = }E: m?Bm?
m
M -R)(xl - R + Q) o
= hp2q= L ( + n2
n=1-3 m?(m? - hne)2 (l - hnz)2 Pen
7 (87)

Neglect all except the m =1 +term of the series and substitute
the value of P from equation (86):

2
-R + 219
()1(1 1:2)2) = 2 - bn® - bRy (88)
- hn

The critical condition is again Bp, = 0. Solving equation (85) for Q
and substituting together with B,, = 0O into equation (88)J one obtains

‘52 5
Rcr=>,l+(hn2-1),’xf-hn2+2u Moo P - b

(hne - l) (1 + 2pa) + 21

where




NACA TN 2840 : L
This expression is a minimum for n = 1, hence

a = -0.3087
> (89)

op .
Rer = (Rcr) sine © 3+ O.lh"{ul})‘l B (Rcr) sin;l

-

These values are glven in table VIII and plotted in figure 15 for
p=0,0.5 1, 1.5, 2, and 3.
In this solution'the effect of the higher modes (m 2 3) on the

—Lr
m2(m2 - L)’
is included, but the effect of the higher modes in lowering the buckling

force exerted by the spring, which enters by the series }Z:

load, which enters by the faster convergling series ————;L—————, is

m2(m2 - 4)2
neglected. In the analogous case of the arch with a concentrated central
load this results in a maximum error of 3 percent for A1 <10 and for
this case it should be no more.

Conslider next the case of symmetrical buckling which occurs for the
smaller values of Xl. As a first approximation neglect the effects of
all the Bp's except Bj. Then from equations (83), there is obtained

under the criticel condition OR/OB; = O the critical load:

Rer = Xl(l + 21) + V;%()“le -1 - 211)3/2 - (90)

A procedure similar to that used in the section "Initial Shape of
Arch Other Than' Sinusoidal" can be applied to f£ind further approxima-
tions. The results. of such a calculation, with the effects of B; and

B3 included, are given in table VIII and are plotted in figure 15.
BUCKLING LOAD BASED ON KARMAN AND TSIEN'S ENERGY CRITERION

It is well-known that the classical buckling criterion, on which
the calculations of the preceding sections are based, leads to erroneous
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results for cylindrical and spherical shells; while a fundamentally
different criterion, first proposed by Kdrmédn and Tsien, whose latest
version is given in reference 7, gives much closer agreement with exper-
iments. The criterion of K€rmén and Tsien (henceforth referred to as
energy criterion) is that the buckling load is reached when the total
energy in a possible (buckled) equilibrium state is equal to the total
energy in the unbuckled state. In other words, if the total potential
energy is such that it is permissible for the structure to jump from
the unbuckled state to a buckled state, then the structure will actually

Jump.

Both the classical and the energy criteria have been applied to
curved beams and shells. In some cases the classical criterion gives
closer agreement with experiments; in others, the energy criterion gives
better results. The reason, as pointed out by Tsien, is that in some
cases the energy "hump" between two equilibrium states (one buckled and
one unbuckled) of the sdme energy level is large and in other cases it
is small. If the hump is small, the ever present small disturbances
will enable the structure to jump from the unbuckled state to the more
stable buckled state. Otherwise, this jump will be hindered. The
crucial decision of the proper criterion depends much on what one means
by a "practical" experimental setup or a "practical" service condition
of the structure.

The energy criterion has been applied to the low arch problem by
Friedrichs (reference 5) who found a great reduction in Rer based on
the energy criterion from that based on the classical criterion. In
order to decide which criterion actuaelly applies to the buckling of low
arches, the experimental setup to be described in the next section
will be accepted as practical and the theoretical results will be com-
pared with experiments.

In applying the energy criterion, one must distinguish a constant

deflection loading (a rigid testing machine) from a constant force (dead-

weight) load. In the former case the change in total energy in buckling
is Jjust equal to the change in the internal strain energy, while in the
latter case it is equal to the change in the strain energy minus the
force times the displacement. However, a laterally loaded arch cannot
buckle if the point of loading is not allowed to Jump; hence only the
dead-weight loading case will be considered.

For dead-weight loading the total energy is

g=U-u (91)

where U 1s the strain energy and W is the work done by the lateral
loading. The energy ¢ can be expressed as a function of the

-~ ad
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deflection &. Then according to the energy criterion, buckling would
occur under a dead weight F provided that

#(01) = 8(3y)
(92)

F(81) = F(3p)

where 5, eand 82 are two deflection configurations. Now the strain
energy U, under the assumptions of the sectlion "General Analysis," is

given by

2

L 2 o 2
EI (:x—%z'-jx°> dx+(H—é—AEH°—)L (93)

U=2
2

From equations (2), (3), and (9), equation (93) becomes

U= gmh{(xm_Bm)eE+%(m+Bm)2:l +S(7\.m2 -Bme)} (9k)

where

BT

K =
AL3.

The work done by the external load in the buckling process is

W= J: QYo - ¥) dx (95)

For a sinusoidally distributed loading,

W = 2KR(M - Bj) (96)
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while for a concentrated load at the midspan

m-1
W = MR 2 (-1) & (O - Bm) (97)
n=1,3,5,...

The buckling load according to the energy criterion can then be obtained
easily.

Sinusoidally Distributed Loading on a Sinusoidal Arch
It was shown in the section "Sinusoidal Arch under Sinusoidal
Loading" that the only equilibrium position of a sinusoidel arch under

sinusoidally distributed load is the one for which all the Bp's
(mn=2,3, ....) vanish. Hence if S = O (zero initial thrust),

g
K

(M - Bl)EE N %(’»1 + Bl)ﬂ - 2R(M\ - By)
(98)

td
1]

M+ B (M2 - 1) - B,3

The buckling conditions that ¢(B;7) = ¢#(B,") and R(B') = R(By") ere
fulfilled when R = )y at which

§-m2 02 302 - B) (99)

and §(B;) = #(-B)). A substitution of R =1y into the second of
equations (98) gives the arch rise at the critical condition:

(Bl)cr = Xle - 1
or
(Bl)cr =0
Hence

Rep = M (100)

- 2
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Central Concentrated Load on a Sinusoidal Arch

Assuming no initial thrust (8 = 0), from equations (94) and (97)
2 1 2 '
i¢(= (M - B)) E" 5.+ Bl)] - 4R - B))

m-1
X El’ﬁam?(l + 3 Bm2) + WR(-1) 2B (101)

m=3,5,...

From equations (66)

2R =\ - Bl<g meB2 - 22 + 1> (102)

If all the Bp's except By are neglected, the above equations

become identical with those for the sinusoidal loading if R is replaced
by 2R. Thus approximately, Rcr for the concentrated center load is

one-half of that for the sinusoidal load. This is the same approximate
ratio as for Rer of the sinusoidal and the concentrated loadings based
on the classical criterion.

The ratio of R¢yr based on the energy criterion to that based on
the classical criterion is plotted in figure 16 for sinusoidal loadings
on a sinusoidal arch. This same ratio holds approximately for the
central load on sinusoidal arches.

EXPERIMENTS

A series of pin-ended arches having rigid simple supports were
loaded with a central concentrated load in the testing apparatus shown
in figures 17 and 18. The ideal end conditions were approximated as
closely as possible by supporting the arches on knife edges mounted in
a heavy steel frame having a stiffness approximately 100 times that of
the specimen. Allowing a 20-percent reduction in this stiffness due to
the flexibility of the knife edges and fittings results in a value of B
equal to 0.988. A reference to the section "Elastic Supports at Ends"
and figure 14 shows that & maximum error of about 1 percent will result
from considering the supports as perfectly rigid.
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The knife-edge fittings were provided with sockets which alined
the ends of the specimen with the knife edges. (See fig. 19.) .

The most critical problem in setting up the specimens for testing \
was the spacing of the supports. A looseness or an initial compression
results in a change in the initial arch shape and an appreciable error
in the buckling load. In the tests the spacing adjustment was made by |
a wedge controlled by a screw which was rotated until the play between
the specimen and the knife edges was Jjust eliminated. °

The specimens were cut from 24S-T3 and 75S-T6 sheets and milled to s
1/2-inch width. The strips were then rolled to the desired curvature ¥
on a three-roll roller. To reduce the effect of roll eccentricity
several passes were made at each setting of the rolls, the rolls being
indexed to a new posltion at the start of each pass.

The curvature of each specimen was measured at 12 stations by a
dial gage which could be read up to ten-thousandths of an inch, placed
between knife edges 2 inches apart. These curvatures were numerically
integrated to find the shape of the specimen for which a 12-term Fourier
expansion (half-range sine series) was made. The first three coefficients
are given in table IX. As a check on the accuracy of the method the
central rise of the arch as predicted by the numerical integration was
compared with the actual rise as measured with a vérnier height gage.
The difference was no more than 4 percent of the arch rise for each
specimen measured. The central arch rise as predicted by the Fourier -
coefficients agreed with the numerical integration within 1 percent.

The Fourier coefficients A;, Ap, and A3 were used in calculating

the theoretical critical load. 1In such calculations use is made of the
fact noted in the section "Central Concentrated Load on a Nonsinusoidal
Arch" that, whereas for smaller A\; (say, M < 2.&) the join%t effect

of A and A3 on Rey 18 not equal to the sum of the effects of Ay
and A3 separately, for larger )y (say, A > 2.&) the effects of M\
and l3 are superposable. Hence for kl < 2.4 the more exact method

of the aforementioned section was used, but for A3 > 2.4 the effects
of A and l3 were calculated separately and added together algebra-

ically. The effect of )3 is given by equation (72). That of oy

according to the previous argument, can be obtained, percentagewise, :
from figure 11(a) or table ITI.

Although no attempt was made to determine the arch shape during
the loading process, visual observation showed that the test performance
at least approximately agreed with the theoretical predictions. The
gradvual increase in the third mode with the load, resulting in a flat-
tening of the arch and then a reversal of curvature for the higher values
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of X1, was noted. For values of Ay > 2.4 the rapid increase in the

unsymmetric second mode just before buckling was quite evident. The
clearest indication of the onset of buckling, however, was obtained by
noticing the vibration of the specimen as the individual weights were
applied. Even a very careful application resulted in a slight vibration
in the fundamental mode. When the load approached within a few pounds
of the critical load there was a rapid decrease in the frequency of this
vibration. Further load applications were made in extremely small
increments.

The theoretical and experimental results are listed in table IX
and plotted in figure 16. In figure 16, the ordinate is the ratio of
Rey determined by the test to that computed theoretically according to
the classical criterion. In the same figure, the dashed line shows the
ratio of Rcr given by the energy criterion to that given by the clas-
slcal criterion. This curve is based on the simple sinusoidal arch
(X2 = k3 = O). For arches used in the experiment Ap and k3 were 80

small that the variation of the ratio (Rcr)energy/(RCI)class does not
vary much from the dashed curve of the figure.

It is seen that the test results agree quite well with results
based on the classical criterion for higher values of A] but drop
appreciably below them for the lower values. All the test values,
however, lie above the energy criterion curve. Although calculations
for the series of arches representing the test specimens indicate that
buckling would occur for Aq 2 1.05, no buckling was observed for

A S 1.38.

A calculation of the stresses in the specimens at buckling was
made to determine if yielding occurred. With Ho =0 and B =1 the

axial compressive force is given by equation (9). Using the nondimen-
sional notation it becomes

o -
ﬂ2

For a sinusoidal arch with a sinusoidal load all the Bp's except
Bl are zero at the critical buckling load and (Bl) cr2 = %(le - l)

for 1 S kle £5.5 and (IBl)cr2 = Xle - 4 for lle 2 5.5. Therefore
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L +2n7)  (for 1E12%5.5)
g H -
(eler _ Fer = (104)
0p P 2>
(for ME 2 5.5)

w |+

=

where P = naEI/L2 is the Buler buckling load of the beam and op = P/A.
Thus it can be seen that the critical compressive force is-just equal to
the Euler load if X = 1. As A} dincreases the critical force increases

until it reaches the Euler load for buckling in the second mode. At
this point the arch buckles unsymmetrically and the critical compressive
stress remains constant for all higher values of ). This performance

is also typical of symmetrical arches with a centrasl concentrated load,
but for arches with a slight asymmetry, as is the case for the specimens
tested, the value Hcr/P = 4 is approached only as A} becomes large.
The values of Hep/P for a series of arches are given in table VI.

The maximum bending stress at any point x 1s given by

o =3 Et<%iy—§ - :;“ (105)

where +t is the thickness of the specimen. In terms of the nondimen-
sional Fourier coefficients this becomes

0p = -’%;'—t\g Z m’ (A, - Bp) sin 5%’5 (106)
m

The bending stresses at the midspan were calculated for the series of
arches with Xo = 0.005M and l3 = o.ohoxl which are representative

of the actual test specimens. The results are shown in table VI together
with the total meximum stress for t = 0.25. The total stress for any
other thickness is obtained by multiplying the last column of table VI

by the factor 16t°.

All the specimens tested had maximum stresses well below the yield
stress of the material at the buckling point. Yielding occurred in the
post-buckling stage for all the specimens except those having the very
lowest values of Aj.




NACA TN 2840 49
CONCLUSIONS

A Fourier analysis has been used to solve the problem of buckling
of low arches under a lateral loading acting toward the center of
curvature. The conclusions may be summarized as follows:

1l. For a sinusoidal arch under a sinusoidal loading, the analysis
gives a very simple exact solution for the nonlinear equation of equi-
librium. The critical load can be expressed as a simple function of
the beam dimension parameters. On the basis of the classical buckling
criterion, it is shown that the buckling mode is symmetrical for arches
having a nondimensional parameter A; less than VETE and is unsym-
metrical for A1 greater than v575. This dividing value is affected

somewhat by the initial thrust in the arch and the elasticity of the
support.

2. For arch shapes other than sinusoidal but under sinusoidal
loading, it is shown that symmetrical deviations have only minor effects
on the buckling load, while unsymmetrical modes of deviation cause
serious reduction of the buckling load. The buckling mode is always
unsymmetrical if the initial shape of the arch contains unsymmetrical
modes. For sinusoidal loading the critical load is independent of the
sign of Ap(m > 1); thus a pair of different arches can have the same

critical load.

3. For a load distribution that deviates from sinusoidal, the
unsymmetrical components again have serious effects. The critical load
will be dependent upon the sign of Xm(m >1). For symmetrical load
distributions, the buckling loads are approximately proportional to the
total loads (under the respective distributions) that are required to
produce a unit deflection at the center of a straight simply supported
beam without axial restraint.

k. Comparison with experiments shows that the classical criterion
of buckling is applicable for larger values of X\, say, AL > 3. But
the classical criterion overestimates the buckling load for very flat
arches. The experimental buckling load is always higher than that
estimated according to the energy criterion of Kérmg€n and Tsien but has
a tendency to approach that criterion as ) decreases. For M—>1

(with exact value depending on the initial thrust and support conditions),
the arch deflects continuously and there is no buckling phencmenon.

California Institute of Technology
Pasadena, Calif., January 24, 1952
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VAIUES OF Rgp

TABLE I

A3 A FURCTION OF INITIAL THRUST AND ARCHEH RISE

5 (1 - s)l/2 1.0 1.2 1.4 1.6 1.8 2.0
0 1.,000000 1.000000 1.312338 | 1.762039 | 2.349955| 3.090387| k.000000
1 853815 .912172 1.232735 | 1.680056 | 2.263209| 2.99T7755| 3.900829
25 645519 .798113 1.120608 | 1.562302 |2.137273| 2.862332| 3.755138
.50 .353553 .636083 .95078% | 1.379012 | 1.938017| 2.645717| 3.520288
1.00 1 0 384900 .665108 | 1.056166 | 1.576551| 2.244738| 3.079201

W (5.5 - g)yL/2| 2.k 2.6 3 3.5 4
5.,096309 6.019436 6.379947 | 7.583975 | 9.70820L! 12, 116843 14,392306
.1 5.590180 5.765646 | 6.251455 | 7.413455 | 9. 474955 11.816911| 14.035515
.25 | 4.833707 5.392701 6.05323% | 7.154805 | 9.123864]11.371428( 13.500000
.50 | 4.580028 W, 792269 5,709987 | 6.716641 | 8.535621|10.624117|12.606599
1.00 | L4,069398 3.67h235 4.983975 | 5.817216 | 7.348470| 9.124145|10.816653
w

ohge N VOVN

({9
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TABIE II

VALUES OF (Bm)ers (BL)gps A0 Rop COMPUIED FROM EQUATIONS (40) AND (1)

(a) m=2

ke

o | @B)e |@)ae| Be | Bae | % | Ba |@gte| By | Bo

Xp/M = 0.01 MM = 0.05

s 6 s 6 & 0 s s s 0

OUVO RNRFNOORAEFNO

FOWOPPORORRHEF

0.05 | 0.06655 1.331 Imag. Imag,

0.010 [ 0.0133% | 1.33% | Imeg.l
.06 .08824 1.h71 0.3785 | 1.306

0121 .01773 1.478 0.3828
.01y | 02372 1.694 .5656
.016 | .03259 2.037 .21k
.018 | .ok7hk 2.636 .8660
020 ] .07663 3.832 1.0110
.022 | .1339 6.088 1.1947
024 | .1990 8.29% 1.4443

2

W =3

ﬁﬁ%@é%s&s

.08 .1569 1.961 L1257 | 2.297
.09 2121 2.357 .8886 | 2.958
.10 .2817 2.817 | 1.0690} 3.689
Jd1 | .3568 3.243 1.2699 | L.443

12 4302 3.585 1.4808 | 5.190
.026 | .253% 9.748 1.7077 .13 .5002 3.847 1.6931 | 5.919
.030 | .3428 11.43 2.2099

.035{ .h386 12,53 2.7936 | 10. 99 .175 .7840 4. 480 2.609 8:997
.00 | .5267 13.17 3.3L467 | 13.02 .20 L9271 4.636 3.096 |10.616

MlM = 0.1 ApfM = 0.2

1.0 /0.10 [0.1325 1.325 Inag- Imag. | 0.20 | 0.2606 1.303 Imag. Imag.
1.2] .12 B ly 4 %) 1.451 0.364% | 1.289| .24 .3349 1.396 0.2964 | 1.240
1.k 1% 2264 1.617 5540 | 1.692 | .28 .8y 1.495 .ug76 | 1.562
1.6 .16 .2910 1.818 L7235 | 2.179 ) .32 .509% 1.592 6668 | 1.925
1.8 .18 .3662 2.035 .89k | 2.724§ .36 .6039 1.677 .8272 | 2.309
2.0{ .20 LHT3 2.237 1.0715 | 3.298 | .% .6998 1.7L49 9838 | 2.702
2.2 .22 .5296 2.%07 1.2582 | 3.879 1 .4 .7955 1.808 1.1381 | 3.096
2.4 | .24k | .6108 2.545 -1 1.4388 | L.bSS5 | .48 | .8906 1.855 | 1.2902 | 3..489
2.6 .26 .6500 2.65h% .| 1.6226 ] 5.022| .52 .9848 1.894 1.4403 | 3.879
3.0} .30 .8432 2.811 1.9848 | 6.130 | .60 | 1.170 1.951 1.7354 | 4.648
3.5] .35 {1.027 2.93% (2.6 4 7.470] .70 | 1.398 .1.997 2.096 5.590
ko| .40 [1.205 3.013 2.816 8.709 | .80 | 1.622 2.028 2,450 6.518
A‘Zlk'l = 0.3 ).2/)»1 = 0.4
1.0 }10.30 |0.3829 1.276 Imag. Imag. | 0.50 | 0.5002 1.250 Imag. Imag.
1.2 .3 482l 1.3%0 0.1111 | 1.202 | .48 .6212 1.204 Imag. Imag.
1.41 k2 5879 1.h00 .37&6 1.453 | .56 .Th56 1.332 Imag. Imag.
1.6 .48 1.452 . 1.733 | .64 .8716 1.362 0.3177 | 1.612
1.8 | .54 80TL 1.495 L6907 | 2.024 | .72 .9980 1.386 46371 1.853
2.0 .60 .9208 1.535 .8093 | 2.319{ .80 | 1.124 1.ko5 5016 | 2.091
2.2| .66 }1.028 1.557 L9620 | 2.615| .88 | 1.250 1.h21 .7082 | 2.331
2.4} .72 11.137 1.580 1.0911 | 2.911 | .96 | 1.376 1.433 .8181 | 2.571
2.6 .78 [1.246 1.598 1.217% { 3.205 {1.0k | 1.500 1.143 .9236 1 2.810
3.0 .90 {1.h463 1.625 1.4640°77 3.789 |1.20 | 1.Th9 "1.458 1.1242 | 3.288
3.5 }11.05 |1.730 1.648 1.76% | 4.510 j1.40 | 2.058 1.h470 1.3688 | 3.881
4,oj1.20 |1.996 1.60 | 2.365 1.478 1.6048 | L. k71

1.663 | 2.0581] 5.224

-,
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TABLE IT

VALUES OF (Bm)cr, (Bl)a., ARD R, COMPUTED FROM EQUATIONS (40) AND (41) - Concluded

(b) m=3

M| M| (B3)e [(B3)er/23| (B)er| Ber M| (B3)er (B3)er/*3| (Bl)er| Rex

A3/M = 0.01 A3[M = 0.05
1.0| 0.010| 0.01125 1.125 Imag. | Imeg. | 0.05 | 0.05623 1.125 Imag. | Imag.
1.2| .012| .o1ko2 1.168 0.3779| 1.312 .06 .07001 1.167 0.3762| 1.308
1.4 .01k} .o0iT12 1.223 5647 1.762 .07 | .085L40 1.220 5617 | 1.750
1.6| .016| .02069 1.293 .T3k2| 2.36k .08 .1030 1.287 .T183| 2.323
1.8] .018| .02490 1.383 .8622| 3.088 09| .1236 1.37h .8530| 3.035
2.0 .020{ .02998 1.499 1.0000| 3.996 JA0 | L1473 1.473 1.0025| 3.89%
2.2 .022| .036k2 1.655 1.1265] 5.083 1 1758 1.598 1.1425] k.903
2.k .o24| .okk60 | 1.858 | 1.2611] 6.381 12| .2098 1.748 | 1.2817| 6.05h4
3.0| cmmoe| mmmmmee | e : ——
koo - JEUIVENISY |V PEVIPR [NSTSOICIRG ————

A3/M = 0.1 A3fd = 0.2
1.0| 0.10 | 0.1112 1.122 0.1463| 0.9969] 0.20 | 0.2234 1.117 Imag. | Imag.
1.2{ .12 .1395 1.162 .3693| 1.295 24| L2760 1.150 0.3172] 1.255
1.%| .1k .1696 1.211 | .5538| 1.716 28| .3321 1.186 .5110| 1.610
1.6] .16 .2032 1.270 .T109| 2.249 .32 .3919 1.225 .6694 | 2.036
1.8 .18 .2408 1.338 .8587| 2.893 .36 .L5h9 1.264 .8163| 2.516
2.0} .20 .2828 1.41k 1.0025| 3.649 40| .5203 1.301 .9601| 3.038
2.2 .2 .3292 1.496 1.1466] 4. 476 Ah | L5877 1.336 1.101 | 3.589
2.4 .24 .379% 1.581 1.2950| 5.386 48| .6562 1.367 1.2416| L4.159
2.6| .26 .k32) 1.663 1.4486 ] 6.348 52| .7254 1.395 1.3821{ 4.7%0
3.0 52 | 725 1.4h3 1.6620| 5.913
k.0 .8o | 1.209 1.512 2.3557| 8.821

MgfN = 0.3 A3l>.l = 0.k
1.0] 0.30 | 0.3327 1.109 Imag. | Imag. | 0.%0 | 0.4ho2 1.101 Imag Imeg.
1.2| .36 . 4082 1.13% 0.2086| 1.213 481 .5370 1.119 Imag. | Imag.
1.4 .42 4867 1.159 .1133] 1.501 56| .6358 1.135 0.2668 | 1.420
1.6| .48 S6TT 1.183 .5854| 1.828 L6h | L7360 1.150 4e8 )l 1.677
1.8| .54 .6503 1.20% .T293| 2.18% 721 .8371 1.163 .5833] 1.951
2.0 .60 .73 1.224 | .8636] 2.556 .80 | .9385 1.173 .T100{ 2.233
2.2} .66 .8185 1.2% .99k2 | 2.938 .88 ] 1.040 1.182 .8283 | 2.520
2.4 .72 .9032 1.254 1.1216| 3.326 .96 | 1.142 1.189 9oz | 2.808
2.6| .78 .9881 1.267 1.2464 ) 3.716 | 1.0k} 1.243 1.196 1.0525 3.097
3.0 .90 | 1.158 1.286 | 1.ho32| L.h96 | 1.20 |1.446 | 1.205 | 1.2508| 3.666
3.5 1.05 | 1.369 1.303 1.7944 | 5.465 | 1.40 | 1.699 1.213 1.5276 | k.391
k.o 6.423 | 1.60}1.951 1.219 1.7818] 5.101

1.20 | 1.579 1.315 2.092

é




VALUES OF R..

mamrm TTT
1ADIEY LLL

FOR A SINUSOIDALLY IOATED ARCH HAVING NONZERD A, AND A, COMPUTED FROM EQUATION (k)

[:Da.shed lines indicate that there is no critical load]

(8) m=3
3/ M 10 1.2 1.k 1.6 1.8 2,0 2,2 2.} 2.6 3.0 3.5 .0
0.01 | 1.0000 | 1.3121 | 1.7615| 2.3637 | 3.0881 | 3.9955| 5.0877 | 6.3812| 7.5720 | 9.6960 | 12.1039 | 14,3763
205 | wmme—- 1.3079 | 1.7499 | 2.3228 | 3.03k9 | 3.89L45 | L.9029 | 6.05k0 | T.2662 | 9.3967 | 11.7881 | 14,0371
B 1.2953 | L.7161 | 2.2493 | 2.8926| 3.6492| 4 U765 | 5.3864 | 6.3L485 | 8.3545 | 10,7127 | 12.8865
- T [V 1.2547 | 1.6105| 2.0359 | 2.5164 | 3.0383| 3.5892 | 4.1589| 4.7396 | 5.9134 | 7.3765 | B.8213
R p—— 1.2132 | 1.5011 | 1.8285 | 2.1840 | 2.5562| 2.938%4 | 3.3260 | 3.7159 | 4.h96k | 5.4650 | 6. hee8
B ol ICEEE T 14195 1.6772 | 1.9510 | 2.2332 2,5196 2.8081 3.0971 | 3.6657 | 4.3906 5'10]'EJ
{(b) m=2
. A ]
1.0 1.2 A 1.6 1.8 . . b . . . .
Ao/ N 1 2.0 2.2 2 2.6 3.0 3.5 4.0
0,01 | ==n-=- 1.3121 | 1.7612 | 2,376 | 3.0837 | 3.9775 | 4.9991 | 6.0364 | T7.0223 | 8.8561 | 10.9893 | 13.0235
.05 | —meme- 1.3060 | 1.7h22| 2.2970 | 2.9577 | 3.6889 | L.W435 | 5.190k | 5.9191 | 7.3218 | B.9975 | 10.6163
s T (SR 1.2887 | 1.69171 2.1790 | 2.7243 | 3.29821 3.8788 | L. 4548 | 5.0223 | 6.1296 | 7.470% | 8.7094
2 | mmemn- 1.2397 | 1.5616! 1.9248 | 2.3091 | 2.7019 | 3.0964 | 3,4892 | 3.8788 | k6475 | 5.5905 | 6.5179
3| e 1.2017 | 1.4534 ) 1.7328 | 2.0236 | 2.3185 | 2.6150 | 2.9106 | 3.20%9 | 3.7888 | k.5102 | S5.22k0
I T (U NSR (RIS 1.6120 | 1.8530 | 2.0910 | 2.3306 | 2.5705 | 2.8102 | 3.2878 | 3.8814 | hL.471h
W

— a3

e
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TABIE IV

VALUES OF k FROM

EQUATION (62)

VALUES OF R,

TABLE V

55

FOR A SINUSOIDAL ARCH

WITH A CENTRAL CONCENTRATED LOAD

M k M Rer
1.0| 0.1929 x 10-3 2.4 | 3.089
1.2 .3578 2.6 | 3.678
1.4 .7075 3.0 | L4.716
1.6 1.408 3.5 5.890
1.8] 2.767 4,0 7.000
2.0[ 5.486 4,51 8.072
2,2]10.83 5.0 9.122
2.4[21.70 5.5 | 10.156
6.0 |11.179
6.5 | 12.193
7.0 ] 13.201
7.5 | 14.204
8.0 | 15.206
8.5 | 16.203
9.0 |17.195
TABIE VI
CRITICAL CONDITIONS FOR CENTRALLY LOADED ARCHES WITH
dp = 0.005% AND Ag = 0.040x,
Max. critical
A'l (Bl) cr (Bg) cr RCI‘ (B3)cr (Uc)cr (Ub)cr,max stress
oG % (psi)
(1)
1.2} 0.3713 | 0.0088 0.651 0.075| 1.28 3.85 8.4 x 103
1.5| .6310| .01351 .996| .108| 1.84 k.50 10.L4
2.0 .9895| .03263 | 1.878| .196| 2.79 7.21 16.3
2.5 1.4%003 | .1157 3.048| .290| 3.57 9.7h 21.8
3.0 1.9770 | .2175 k193 | .380]| 3.73 11.63 25.1
40| 3.0494 | .3605 6.236{ .541| 3.78 15.16 30.9
5.0] 4.039 L4831 8.14%0 | .693{ 3.79 18.7 36.8
6.0 4.990 .5991 9.986 | .842| 3.80 22.3 k2.6
7.0] 5.922 .7120 {11.800| .990| 3.80 25.9 48.5
8.0 6.841 .8231 |[13.596|1.136| 3.81 29.5 54.5
9.0| 7.752 .9332 |15.380{1.282| 3.81 33.1 60.3
1Highest outer fiber stress in arches representative of test speci-

mens

(2 = 10.3 x 10° psi,

L = 18 in., and t = 0.25 in.).
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TABLE VII
EFFECT OF FLEXIBILITY OF SUPPORT ON CRITICAL LOAD

(a) Values of Ry &8 & function of B

1.0 1.2 1.4 1.6 1.8 2.0 2,2 2.4 2.6 3.0 3.5 4.0
1.000 | 1.312 | 1.762 | 2.350| 3.080 | 4.000| 5.096 | 6.380 | 7.584 | 9.708 |12.12 | 1k.39
----- 1.288 | 1.716 | 2.277| 2.983 | 3.850 | 4.895 | 6.135 | 7.391 | 9.564 [ 12.01 | 14.30
----- 1.265] 1.671 | 2.20k| 2.876 | 3.70L | 4.694 | 5.873 | 7.166| 9.ho2 [ 11.88 | 1Lk.20
----- 1.226 | 1,584 | 2.062| 2.664 | 3.404 | 4,295 | 5,349 | 6.584| 9.000 [ 11.58 | 13.95
----- 1.200 | 1.504 | 1.924| 2.457 | 3.155| 3.897 | 4.829 | 5.917 | 8.439 | 11.17 | 13.62
---------- 1.437| 1.795| 2.256 | 2.823 | 3.505 | k.312| 5.255| 7.587 | 10.59 [13.16
--------------- 1.681| 2.066 | 2.544 | 3.121 | 3.803 | 4.598 | 6.565 | 9.686 | 12.48
{b) Solution of equation (71) HacA

B (M)o

.0 2.345

.95 2, k06

.90 2.471

.80 2,622

.70 2,803

.60 3.028

.50 3.317

Ohge NI VOVM
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VALUES OF Ry

ELASTIC SUEPORT AND q = g, sin ===

TABLE VIIT

FOR A SINUSOIDAL ARCH WITH A CENTRAL

L

B
AL 0.5 1.0 1.5 2.0 3.0
1.k2 2.82 No solution in this
1.60 3.3L
1.7% 3.87 5.10 region \
1.80 k.11 5.32
2.00 5.06 6.25 T.61y 9.28 12.46
2.20 6.21 T7.k0 8.54 9.62 11.66
2.4 7.43 8.43 9.38 10.29 12.00
3.00 10.45 11.17 11.84 12.49 13.70
3.50 17.73 13.32 13.87 1k.40 16.40
k.00 1k.92 15.42 15.89 16.34 17.20

Y
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TABLE IX

THEORETICAL AND EXPERTMENTAL DATA

Length | Width | Thickness Buckling | (Rcy) (Rex)
Specimen 1in. in. in. M Ao A‘3 1oad exp 233
. ( )| (in.) (in.) (1b) (Rcr)class
1 18 0.500 0.249 3.78 | 0.0138 | 0.136 82.7 5.19 0.880
2 17:1[—2- 495 1885 |9.12 | L0055 | 3wk | 85.7 | 16.37 1.004
3 18 .500 .2kg 4.25 L0097 | .146 107.0 6.72 .955
L 18 .199 .2kg 3.32 L0055 | .11k 73.7 4.63 .915
5 17-3—2 .501 .2h9 2.63 .om7| .o097 33.9 2.11 .653
6 1831-2- ho3 2kg 1.83 L0146 ¢ 063 16.2 1.04 .6TL
T 18 .502 .250 k.7 .0842 | .159 98.5 6.07 .884
8 18 .502 251 k.ot .okg6 | .167 ol 5.72 .976
9 18 .50L .251 3.67 L0666 | .164 80.0 4,83 .988
10 18 .505 250 3.30 0178} .123 60.4% 3.70 .781
11 18 .502 .250 3.90°| .0264 | .126 96.7 5.95 1.003
12 18 .505 .250 5.31 L0015 | .185 139.8 8.55 .926
13 18 .503 250 5.07 0957 | 131 115.8 6.98 .925
1L 17% .502 .37h |1.86 | .oo16| .0582| 83.3 1.02 .630
15 17%% .500 .35 |1.67 | .oi0| .0610| 73.0 .886 .703
16 17% .501 .37k 1.38 .0013 | .0b459 (2) | ~emeem | ~eee-
17 17% .501 37k |1.265] .o | .oute| (@) | e | mmee-
18 173—; .502 374 |2.5% | .o015 | .0850 | 157.3 1.93 .666
19 17322 499 .37h 2.08 .ooi+3 L0707 | 129.9 1.60 “T73
20 17% .503 37k 11.3% | .ookh| L0500 | (2) | ememmm | meeee
21 173—% .502 374 | 2.43 .0112 | .0883 | 176.9 2.16 s
22, 18 .501 .186 6.08 .0058 | .237 48.2 9.70 .930
23 18 .4g99 .185 6.143 .0031 | .236 53.6 | 10.96 .978
24 18 .500 .185 7.23 L0225 | .257 62.5 12.89 1.031
25 18 .500 .186 9.15 .0007 | .311 73.0 14.73 1.016

1Material: Specimens 1 to 13 and 22 to 25, 24S-T3; specimens 14 to 21, T58-T6.

E = 10.3 x 107 psi.

2Bp@ec:l.men did not buckle. \
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Figure 1l.- Buckling mode for a high arch.

Figure 3.- Coordinate system.
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Figure L4.- Relation between B, and R for gsymetrical buckling of a
sinusoidal arch under a sinuscldal load.
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Figure 5.- Relatlons between By, By, and R for a sinusoidal arch
which buckles in the ~-nth mode.
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Figure 6.- Critical load on a sinusoidal arch as a function of arch rise.
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Flgure T.- Deformatiqn history of & sinusoldal arch.
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Figure 8.- Change of critical load due to initial thrust Hg.
(ARcr)g = (Rar)gep - (Ber)gegs B = HoLe/erEI.
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N,

(&) m=2; ap/ay = -1/3.

(bp) m= 3; a3/a) = -1/3.

N

(c) m=3; ag/my = 1/3.

Figure 9.- Examples of low arches having nonsinusoidal center lines.
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/3-0.0| /
8=0.01
6 1.8 J 8“0.05
5 ] / / B=0.1
820.05 1.6 H—+
_l%§l£L / /,//”’A (B3) ¢ /y
2 3er,
a Z A3 / m
//// ! A pd
3 ’ 3=0.1 P
/C////!/,,,f ' ,f;//j::r” $=03
. /1 | 3=0¢ .2 T 8:041
L—""1  3=03 _
8004 I
' 2 3 4 5 -9 2 3 4
Al A

(2) Ratio of (Bp)p/he = (b2)cy/a2- (b) Ratio of (B3)qy/A3 = (b3)cp[a3:

Figure 10.- Solution of eguation (L40) for m =2 and m = 3.
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Figure 11.- Rer (sinusoldal) for evch forms =2 = ) sin 2+ oy otn B vith m =2 and 3
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Figure 11.- Concluded.
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(Rcr)conc_ ~

7 Y
/,
= (Rer) gne (A2 = %A1 X3=4%)\)
y
/ NA;CA
[ 2 3 4 5 6 7 8
M

Figure 12.- Reyr for arches under a concentrated central load.
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Figure 13.- Variation with load of first three modes of two centrally
loeded erches heving Ap/hy = 0.005 and Ag/Ap = 0.040.
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Figure 15.- Critical load of a slnusoldal arch bhaving a ceﬁtral elastic
support. K = 2L3a'/:r1'EI.
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Figure 16.- Theoretical. and experimental results.
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Figure 17.- Testing Jjig.




Figure 18.- Testing apparatus with specimen in place.
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NACA-Langley - 9-1-64 - 130

Figure 19.- Knife-edge fitting.




